

AUTOMATED ONLINE ECOLOGICAL MODELING AND EVALUATION FOR EVERGLADES MANAGEMENT AND RESTORATION

Leonard Pearlstine¹

Suresh Goldconda²

Kevin Suir³

Alicia LoGalbo¹

Craig Conzelmann³

Janice Parsons¹

¹ National Park Service,

Everglades National Park, South Florida Natural Resources Center

² University of Louisiana at Lafayette, Center for Advanced Computer Studies

³ U.S. Geological Survey,

National Wetlands Research Center, Advanced Applications Team

Flexibility that encourages use as a standard framework for future additional evaluations of ecological modeling.

Facilitate integrated understanding of hydrologic conditions and ecological responses

- Spatial and temporal variability
- Ecosystem connectivity
- Rapid access via web
- Linkage from planning to implementation

Pilot implementation integrates a wood stork evaluation module

- Wading birds are high priority indicators
- Well-established and analyzed datasets linked tightly to surface water hydrology
- Hydrology readily available online from Everglades Depth Estimation Network (EDEN)
 - ✓ daily, interpolated water-level
 - ✓ Entire greater Everglades
 - ✓ Updated online every few days
 - √ 1991 present

Decision support in Everglades water management and restoration

1. Periodic Scientists Call

~every 3 weeks

2. Tuesday Biologists Call

weekly

3. Multi-Species Recovery Plan

3x per year

4. Multi-Species Water Management Meeting weekly

Multi-agency: local, state, regional, and federal scientists, technical staff, and decision-makers.

Regular review of compliance with water release regulations and impacts on ecological, agricultural, urban and cultural priorities.

Flexibility within regulation schedules and structural capacities for modification of water delivery timing and spatial distribution.

Input data acquisition

Daemon process
Scan website with smart download
Buffer data

Pre-processing

Model logic execution

Subset/ Merge
Transformations
Compute water depths

& other spatial metrics

e.g., Wood Stork algorithms

Post-processing

Map generation
Tabular results
Report generation

Content Delivery

Publish to web

science for a changing world

Tabular Data

Acreage by HSI categories for each colony

Acreage by HSI categories for each colony. A colony area is defined by distance from center of colony point.

Colony	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Lox NC-4	138,891	10,675	7,947	8,619	8,935	7,433	9,252	12,612	16,170	38,034
Lox# 01083	255,445	0	0	0	0	0	0	0	0	0
Jetport	245,442	23,208	28,703	21,943	17,119	14,945	14,984	14,589	14,233	29,494
3B Mud East	424,661	0	0	0	0	0	0	0	0	0
Jetport South	256,038	20,796	27,043	20,164	15,103	13,521	13,798	13,719	14,668	29,810
Jetport new	247,419	23,247	28,822	22,061	17,356	14,866	14,194	14,194	13,561	28,941
Crossover	224,606	26,964	31,550	23,880	18,977	17,356	15,854	15,617	15,419	34,436
2B Melaleuca	354,444	0	0	0	0	0	0	0	0	0
Tamiami West	240,579	19,175	20,005	15,775	10,359	11,307	13,521	17,791	25,027	51,121
Cabbage Bay (New 2009)	424,661	0	0	0	0	0	0	0	0	0
Paurotis Pond	278,771	0	0	0	0	0	0	0	0	0
Lostmans Creek (New 2009)	424,661	0	0	0	0	0	0	0	0	0
Rookery Branch	424,661	0	0	0	0	0	0	0	0	0
Rodgers River Bay Peninsula	424,661	0	0	0	0	0	0	0	0	0
Broad River	424,661	0	0	0	0	0	0	0	0	0
Cuthbert Lake	0	0	0	0	0	0	0	0	0	0
Grossman Ridge West	296,286	16,329	13,877	10,438	6,603	6,919	8,935	11,347	15,736	38,192
Tamiami East1	424,661	0	0	0	0	0	0	0	0	0
Lower Taylor Slough	214,643	0	0	0	0	0	0	0	0	0
Tamiami East2	424,661	0	0	0	0	0	0	0	0	0
Rodgers River Bay Island	424,661	0	0	0	0	0	0	0	0	0

MetaData

Automated Online Ecological Modeling – NEXT STEPS

- Slough Vegetation
- Marl Prairie
- Alligator
- Fishes
- Snail Kite & Apple Snail
- Additional Wading Birds
- Coastal & Estuarine
 - •

Pre-processing

Model logic execution

Post-processing

Content Delivery

Multi-Species & community evaluations

Automated Online Ecological Modeling – NEXT STEPS

Automated Online Ecological Modeling – NEXT STEPS

THREDDS-served Desktop & Web Apps

JEM EverVIEW data viewer

Live updates for public communication (mock-up)

Automated Online Ecological Modeling Challenges

- Develop automated system using input data from resource that are not designed to support machine readable format
- Build a heterogeneous system with a long chain of actions to work coherently
 HTTP reading, NetCDF modification, biological modeling, ArcMap communication, Java coding & python scripting
- Create tools to meet the needs of resource managers for rapid ecological evaluations under changing environmental conditions

Recommendations of Real-Time Performance Measures

- Additional performance measure to provide ecosystem approach to natural resource management
- Increased focus on ecosystem spatial conditions to maximize system-wide benefits to natural resources
- Improved integration between water management operators and natural resource managers
- Additional flexibility in water management to implement recommendations by natural resource managers

